3.7.56 \(\int \frac {\sec ^{\frac {3}{2}}(c+d x)}{(a+b \sec (c+d x))^{3/2}} \, dx\) [656]

3.7.56.1 Optimal result
3.7.56.2 Mathematica [A] (verified)
3.7.56.3 Rubi [A] (verified)
3.7.56.4 Maple [B] (warning: unable to verify)
3.7.56.5 Fricas [C] (verification not implemented)
3.7.56.6 Sympy [F]
3.7.56.7 Maxima [F]
3.7.56.8 Giac [F]
3.7.56.9 Mupad [F(-1)]

3.7.56.1 Optimal result

Integrand size = 25, antiderivative size = 126 \[ \int \frac {\sec ^{\frac {3}{2}}(c+d x)}{(a+b \sec (c+d x))^{3/2}} \, dx=-\frac {2 E\left (\frac {1}{2} (c+d x)|\frac {2 a}{a+b}\right ) \sqrt {a+b \sec (c+d x)}}{\left (a^2-b^2\right ) d \sqrt {\frac {b+a \cos (c+d x)}{a+b}} \sqrt {\sec (c+d x)}}+\frac {2 a \sqrt {\sec (c+d x)} \sin (c+d x)}{\left (a^2-b^2\right ) d \sqrt {a+b \sec (c+d x)}} \]

output
2*a*sin(d*x+c)*sec(d*x+c)^(1/2)/(a^2-b^2)/d/(a+b*sec(d*x+c))^(1/2)-2*(cos( 
1/2*d*x+1/2*c)^2)^(1/2)/cos(1/2*d*x+1/2*c)*EllipticE(sin(1/2*d*x+1/2*c),2^ 
(1/2)*(a/(a+b))^(1/2))*(a+b*sec(d*x+c))^(1/2)/(a^2-b^2)/d/((b+a*cos(d*x+c) 
)/(a+b))^(1/2)/sec(d*x+c)^(1/2)
 
3.7.56.2 Mathematica [A] (verified)

Time = 0.35 (sec) , antiderivative size = 103, normalized size of antiderivative = 0.82 \[ \int \frac {\sec ^{\frac {3}{2}}(c+d x)}{(a+b \sec (c+d x))^{3/2}} \, dx=-\frac {2 (b+a \cos (c+d x)) \sec ^{\frac {3}{2}}(c+d x) \left ((a+b) \sqrt {\frac {b+a \cos (c+d x)}{a+b}} E\left (\frac {1}{2} (c+d x)|\frac {2 a}{a+b}\right )-a \sin (c+d x)\right )}{(a-b) (a+b) d (a+b \sec (c+d x))^{3/2}} \]

input
Integrate[Sec[c + d*x]^(3/2)/(a + b*Sec[c + d*x])^(3/2),x]
 
output
(-2*(b + a*Cos[c + d*x])*Sec[c + d*x]^(3/2)*((a + b)*Sqrt[(b + a*Cos[c + d 
*x])/(a + b)]*EllipticE[(c + d*x)/2, (2*a)/(a + b)] - a*Sin[c + d*x]))/((a 
 - b)*(a + b)*d*(a + b*Sec[c + d*x])^(3/2))
 
3.7.56.3 Rubi [A] (verified)

Time = 0.64 (sec) , antiderivative size = 126, normalized size of antiderivative = 1.00, number of steps used = 9, number of rules used = 9, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.360, Rules used = {3042, 4331, 27, 3042, 4343, 3042, 3134, 3042, 3132}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {\sec ^{\frac {3}{2}}(c+d x)}{(a+b \sec (c+d x))^{3/2}} \, dx\)

\(\Big \downarrow \) 3042

\(\displaystyle \int \frac {\csc \left (c+d x+\frac {\pi }{2}\right )^{3/2}}{\left (a+b \csc \left (c+d x+\frac {\pi }{2}\right )\right )^{3/2}}dx\)

\(\Big \downarrow \) 4331

\(\displaystyle \frac {2 \int -\frac {\sqrt {a+b \sec (c+d x)}}{2 \sqrt {\sec (c+d x)}}dx}{a^2-b^2}+\frac {2 a \sin (c+d x) \sqrt {\sec (c+d x)}}{d \left (a^2-b^2\right ) \sqrt {a+b \sec (c+d x)}}\)

\(\Big \downarrow \) 27

\(\displaystyle \frac {2 a \sin (c+d x) \sqrt {\sec (c+d x)}}{d \left (a^2-b^2\right ) \sqrt {a+b \sec (c+d x)}}-\frac {\int \frac {\sqrt {a+b \sec (c+d x)}}{\sqrt {\sec (c+d x)}}dx}{a^2-b^2}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {2 a \sin (c+d x) \sqrt {\sec (c+d x)}}{d \left (a^2-b^2\right ) \sqrt {a+b \sec (c+d x)}}-\frac {\int \frac {\sqrt {a+b \csc \left (c+d x+\frac {\pi }{2}\right )}}{\sqrt {\csc \left (c+d x+\frac {\pi }{2}\right )}}dx}{a^2-b^2}\)

\(\Big \downarrow \) 4343

\(\displaystyle \frac {2 a \sin (c+d x) \sqrt {\sec (c+d x)}}{d \left (a^2-b^2\right ) \sqrt {a+b \sec (c+d x)}}-\frac {\sqrt {a+b \sec (c+d x)} \int \sqrt {b+a \cos (c+d x)}dx}{\left (a^2-b^2\right ) \sqrt {\sec (c+d x)} \sqrt {a \cos (c+d x)+b}}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {2 a \sin (c+d x) \sqrt {\sec (c+d x)}}{d \left (a^2-b^2\right ) \sqrt {a+b \sec (c+d x)}}-\frac {\sqrt {a+b \sec (c+d x)} \int \sqrt {b+a \sin \left (c+d x+\frac {\pi }{2}\right )}dx}{\left (a^2-b^2\right ) \sqrt {\sec (c+d x)} \sqrt {a \cos (c+d x)+b}}\)

\(\Big \downarrow \) 3134

\(\displaystyle \frac {2 a \sin (c+d x) \sqrt {\sec (c+d x)}}{d \left (a^2-b^2\right ) \sqrt {a+b \sec (c+d x)}}-\frac {\sqrt {a+b \sec (c+d x)} \int \sqrt {\frac {b}{a+b}+\frac {a \cos (c+d x)}{a+b}}dx}{\left (a^2-b^2\right ) \sqrt {\sec (c+d x)} \sqrt {\frac {a \cos (c+d x)+b}{a+b}}}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {2 a \sin (c+d x) \sqrt {\sec (c+d x)}}{d \left (a^2-b^2\right ) \sqrt {a+b \sec (c+d x)}}-\frac {\sqrt {a+b \sec (c+d x)} \int \sqrt {\frac {b}{a+b}+\frac {a \sin \left (c+d x+\frac {\pi }{2}\right )}{a+b}}dx}{\left (a^2-b^2\right ) \sqrt {\sec (c+d x)} \sqrt {\frac {a \cos (c+d x)+b}{a+b}}}\)

\(\Big \downarrow \) 3132

\(\displaystyle \frac {2 a \sin (c+d x) \sqrt {\sec (c+d x)}}{d \left (a^2-b^2\right ) \sqrt {a+b \sec (c+d x)}}-\frac {2 \sqrt {a+b \sec (c+d x)} E\left (\frac {1}{2} (c+d x)|\frac {2 a}{a+b}\right )}{d \left (a^2-b^2\right ) \sqrt {\sec (c+d x)} \sqrt {\frac {a \cos (c+d x)+b}{a+b}}}\)

input
Int[Sec[c + d*x]^(3/2)/(a + b*Sec[c + d*x])^(3/2),x]
 
output
(-2*EllipticE[(c + d*x)/2, (2*a)/(a + b)]*Sqrt[a + b*Sec[c + d*x]])/((a^2 
- b^2)*d*Sqrt[(b + a*Cos[c + d*x])/(a + b)]*Sqrt[Sec[c + d*x]]) + (2*a*Sqr 
t[Sec[c + d*x]]*Sin[c + d*x])/((a^2 - b^2)*d*Sqrt[a + b*Sec[c + d*x]])
 

3.7.56.3.1 Defintions of rubi rules used

rule 27
Int[(a_)*(Fx_), x_Symbol] :> Simp[a   Int[Fx, x], x] /; FreeQ[a, x] &&  !Ma 
tchQ[Fx, (b_)*(Gx_) /; FreeQ[b, x]]
 

rule 3042
Int[u_, x_Symbol] :> Int[DeactivateTrig[u, x], x] /; FunctionOfTrigOfLinear 
Q[u, x]
 

rule 3132
Int[Sqrt[(a_) + (b_.)*sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[2*(Sqrt[a 
 + b]/d)*EllipticE[(1/2)*(c - Pi/2 + d*x), 2*(b/(a + b))], x] /; FreeQ[{a, 
b, c, d}, x] && NeQ[a^2 - b^2, 0] && GtQ[a + b, 0]
 

rule 3134
Int[Sqrt[(a_) + (b_.)*sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[Sqrt[a + 
b*Sin[c + d*x]]/Sqrt[(a + b*Sin[c + d*x])/(a + b)]   Int[Sqrt[a/(a + b) + ( 
b/(a + b))*Sin[c + d*x]], x], x] /; FreeQ[{a, b, c, d}, x] && NeQ[a^2 - b^2 
, 0] &&  !GtQ[a + b, 0]
 

rule 4331
Int[(csc[(e_.) + (f_.)*(x_)]*(d_.))^(n_)*(csc[(e_.) + (f_.)*(x_)]*(b_.) + ( 
a_))^(m_), x_Symbol] :> Simp[a*d^2*Cot[e + f*x]*(a + b*Csc[e + f*x])^(m + 1 
)*((d*Csc[e + f*x])^(n - 2)/(f*(m + 1)*(a^2 - b^2))), x] - Simp[d^2/((m + 1 
)*(a^2 - b^2))   Int[(a + b*Csc[e + f*x])^(m + 1)*(d*Csc[e + f*x])^(n - 2)* 
(a*(n - 2) + b*(m + 1)*Csc[e + f*x] - a*(m + n)*Csc[e + f*x]^2), x], x] /; 
FreeQ[{a, b, d, e, f}, x] && NeQ[a^2 - b^2, 0] && LtQ[m, -1] && LtQ[1, n, 2 
] && IntegersQ[2*m, 2*n]
 

rule 4343
Int[Sqrt[csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_)]/Sqrt[csc[(e_.) + (f_.)*(x_)] 
*(d_.)], x_Symbol] :> Simp[Sqrt[a + b*Csc[e + f*x]]/(Sqrt[d*Csc[e + f*x]]*S 
qrt[b + a*Sin[e + f*x]])   Int[Sqrt[b + a*Sin[e + f*x]], x], x] /; FreeQ[{a 
, b, d, e, f}, x] && NeQ[a^2 - b^2, 0]
 
3.7.56.4 Maple [B] (warning: unable to verify)

Leaf count of result is larger than twice the leaf count of optimal. \(586\) vs. \(2(145)=290\).

Time = 3.24 (sec) , antiderivative size = 587, normalized size of antiderivative = 4.66

method result size
default \(-\frac {2 \left (-\frac {\left (1-\cos \left (d x +c \right )\right )^{2} \csc \left (d x +c \right )^{2}+1}{\left (1-\cos \left (d x +c \right )\right )^{2} \csc \left (d x +c \right )^{2}-1}\right )^{\frac {3}{2}} \left (\left (1-\cos \left (d x +c \right )\right )^{2} \csc \left (d x +c \right )^{2}-1\right )^{2} \sqrt {\frac {a \left (1-\cos \left (d x +c \right )\right )^{2} \csc \left (d x +c \right )^{2}-b \left (1-\cos \left (d x +c \right )\right )^{2} \csc \left (d x +c \right )^{2}-a -b}{\left (1-\cos \left (d x +c \right )\right )^{2} \csc \left (d x +c \right )^{2}-1}}\, \left (\sqrt {\frac {a -b}{a +b}}\, \left (1-\cos \left (d x +c \right )\right )^{3} \csc \left (d x +c \right )^{3}+\sqrt {-\frac {a \left (1-\cos \left (d x +c \right )\right )^{2} \csc \left (d x +c \right )^{2}-b \left (1-\cos \left (d x +c \right )\right )^{2} \csc \left (d x +c \right )^{2}-a -b}{a +b}}\, \sqrt {\left (1-\cos \left (d x +c \right )\right )^{2} \csc \left (d x +c \right )^{2}+1}\, \operatorname {EllipticF}\left (\sqrt {\frac {a -b}{a +b}}\, \left (-\cot \left (d x +c \right )+\csc \left (d x +c \right )\right ), \sqrt {-\frac {a +b}{a -b}}\right )-\sqrt {-\frac {a \left (1-\cos \left (d x +c \right )\right )^{2} \csc \left (d x +c \right )^{2}-b \left (1-\cos \left (d x +c \right )\right )^{2} \csc \left (d x +c \right )^{2}-a -b}{a +b}}\, \sqrt {\left (1-\cos \left (d x +c \right )\right )^{2} \csc \left (d x +c \right )^{2}+1}\, \operatorname {EllipticE}\left (\sqrt {\frac {a -b}{a +b}}\, \left (-\cot \left (d x +c \right )+\csc \left (d x +c \right )\right ), \sqrt {-\frac {a +b}{a -b}}\right )+\sqrt {\frac {a -b}{a +b}}\, \left (-\cot \left (d x +c \right )+\csc \left (d x +c \right )\right )\right )}{d \left (a +b \right ) \sqrt {\frac {a -b}{a +b}}\, \left (\left (1-\cos \left (d x +c \right )\right )^{2} \csc \left (d x +c \right )^{2}+1\right )^{2} \left (a \left (1-\cos \left (d x +c \right )\right )^{2} \csc \left (d x +c \right )^{2}-b \left (1-\cos \left (d x +c \right )\right )^{2} \csc \left (d x +c \right )^{2}-a -b \right )}\) \(587\)

input
int(sec(d*x+c)^(3/2)/(a+b*sec(d*x+c))^(3/2),x,method=_RETURNVERBOSE)
 
output
-2/d/(a+b)/((a-b)/(a+b))^(1/2)*(-((1-cos(d*x+c))^2*csc(d*x+c)^2+1)/((1-cos 
(d*x+c))^2*csc(d*x+c)^2-1))^(3/2)*((1-cos(d*x+c))^2*csc(d*x+c)^2-1)^2*((a* 
(1-cos(d*x+c))^2*csc(d*x+c)^2-b*(1-cos(d*x+c))^2*csc(d*x+c)^2-a-b)/((1-cos 
(d*x+c))^2*csc(d*x+c)^2-1))^(1/2)*(((a-b)/(a+b))^(1/2)*(1-cos(d*x+c))^3*cs 
c(d*x+c)^3+(-(a*(1-cos(d*x+c))^2*csc(d*x+c)^2-b*(1-cos(d*x+c))^2*csc(d*x+c 
)^2-a-b)/(a+b))^(1/2)*((1-cos(d*x+c))^2*csc(d*x+c)^2+1)^(1/2)*EllipticF((( 
a-b)/(a+b))^(1/2)*(-cot(d*x+c)+csc(d*x+c)),(-(a+b)/(a-b))^(1/2))-(-(a*(1-c 
os(d*x+c))^2*csc(d*x+c)^2-b*(1-cos(d*x+c))^2*csc(d*x+c)^2-a-b)/(a+b))^(1/2 
)*((1-cos(d*x+c))^2*csc(d*x+c)^2+1)^(1/2)*EllipticE(((a-b)/(a+b))^(1/2)*(- 
cot(d*x+c)+csc(d*x+c)),(-(a+b)/(a-b))^(1/2))+((a-b)/(a+b))^(1/2)*(-cot(d*x 
+c)+csc(d*x+c)))/((1-cos(d*x+c))^2*csc(d*x+c)^2+1)^2/(a*(1-cos(d*x+c))^2*c 
sc(d*x+c)^2-b*(1-cos(d*x+c))^2*csc(d*x+c)^2-a-b)
 
3.7.56.5 Fricas [C] (verification not implemented)

Result contains higher order function than in optimal. Order 9 vs. order 4.

Time = 0.11 (sec) , antiderivative size = 488, normalized size of antiderivative = 3.87 \[ \int \frac {\sec ^{\frac {3}{2}}(c+d x)}{(a+b \sec (c+d x))^{3/2}} \, dx=\frac {6 \, a^{2} \sqrt {\frac {a \cos \left (d x + c\right ) + b}{\cos \left (d x + c\right )}} \sqrt {\cos \left (d x + c\right )} \sin \left (d x + c\right ) - \sqrt {2} {\left (-i \, a b \cos \left (d x + c\right ) - i \, b^{2}\right )} \sqrt {a} {\rm weierstrassPInverse}\left (-\frac {4 \, {\left (3 \, a^{2} - 4 \, b^{2}\right )}}{3 \, a^{2}}, \frac {8 \, {\left (9 \, a^{2} b - 8 \, b^{3}\right )}}{27 \, a^{3}}, \frac {3 \, a \cos \left (d x + c\right ) + 3 i \, a \sin \left (d x + c\right ) + 2 \, b}{3 \, a}\right ) - \sqrt {2} {\left (i \, a b \cos \left (d x + c\right ) + i \, b^{2}\right )} \sqrt {a} {\rm weierstrassPInverse}\left (-\frac {4 \, {\left (3 \, a^{2} - 4 \, b^{2}\right )}}{3 \, a^{2}}, \frac {8 \, {\left (9 \, a^{2} b - 8 \, b^{3}\right )}}{27 \, a^{3}}, \frac {3 \, a \cos \left (d x + c\right ) - 3 i \, a \sin \left (d x + c\right ) + 2 \, b}{3 \, a}\right ) + 3 \, \sqrt {2} {\left (-i \, a^{2} \cos \left (d x + c\right ) - i \, a b\right )} \sqrt {a} {\rm weierstrassZeta}\left (-\frac {4 \, {\left (3 \, a^{2} - 4 \, b^{2}\right )}}{3 \, a^{2}}, \frac {8 \, {\left (9 \, a^{2} b - 8 \, b^{3}\right )}}{27 \, a^{3}}, {\rm weierstrassPInverse}\left (-\frac {4 \, {\left (3 \, a^{2} - 4 \, b^{2}\right )}}{3 \, a^{2}}, \frac {8 \, {\left (9 \, a^{2} b - 8 \, b^{3}\right )}}{27 \, a^{3}}, \frac {3 \, a \cos \left (d x + c\right ) + 3 i \, a \sin \left (d x + c\right ) + 2 \, b}{3 \, a}\right )\right ) + 3 \, \sqrt {2} {\left (i \, a^{2} \cos \left (d x + c\right ) + i \, a b\right )} \sqrt {a} {\rm weierstrassZeta}\left (-\frac {4 \, {\left (3 \, a^{2} - 4 \, b^{2}\right )}}{3 \, a^{2}}, \frac {8 \, {\left (9 \, a^{2} b - 8 \, b^{3}\right )}}{27 \, a^{3}}, {\rm weierstrassPInverse}\left (-\frac {4 \, {\left (3 \, a^{2} - 4 \, b^{2}\right )}}{3 \, a^{2}}, \frac {8 \, {\left (9 \, a^{2} b - 8 \, b^{3}\right )}}{27 \, a^{3}}, \frac {3 \, a \cos \left (d x + c\right ) - 3 i \, a \sin \left (d x + c\right ) + 2 \, b}{3 \, a}\right )\right )}{3 \, {\left ({\left (a^{4} - a^{2} b^{2}\right )} d \cos \left (d x + c\right ) + {\left (a^{3} b - a b^{3}\right )} d\right )}} \]

input
integrate(sec(d*x+c)^(3/2)/(a+b*sec(d*x+c))^(3/2),x, algorithm="fricas")
 
output
1/3*(6*a^2*sqrt((a*cos(d*x + c) + b)/cos(d*x + c))*sqrt(cos(d*x + c))*sin( 
d*x + c) - sqrt(2)*(-I*a*b*cos(d*x + c) - I*b^2)*sqrt(a)*weierstrassPInver 
se(-4/3*(3*a^2 - 4*b^2)/a^2, 8/27*(9*a^2*b - 8*b^3)/a^3, 1/3*(3*a*cos(d*x 
+ c) + 3*I*a*sin(d*x + c) + 2*b)/a) - sqrt(2)*(I*a*b*cos(d*x + c) + I*b^2) 
*sqrt(a)*weierstrassPInverse(-4/3*(3*a^2 - 4*b^2)/a^2, 8/27*(9*a^2*b - 8*b 
^3)/a^3, 1/3*(3*a*cos(d*x + c) - 3*I*a*sin(d*x + c) + 2*b)/a) + 3*sqrt(2)* 
(-I*a^2*cos(d*x + c) - I*a*b)*sqrt(a)*weierstrassZeta(-4/3*(3*a^2 - 4*b^2) 
/a^2, 8/27*(9*a^2*b - 8*b^3)/a^3, weierstrassPInverse(-4/3*(3*a^2 - 4*b^2) 
/a^2, 8/27*(9*a^2*b - 8*b^3)/a^3, 1/3*(3*a*cos(d*x + c) + 3*I*a*sin(d*x + 
c) + 2*b)/a)) + 3*sqrt(2)*(I*a^2*cos(d*x + c) + I*a*b)*sqrt(a)*weierstrass 
Zeta(-4/3*(3*a^2 - 4*b^2)/a^2, 8/27*(9*a^2*b - 8*b^3)/a^3, weierstrassPInv 
erse(-4/3*(3*a^2 - 4*b^2)/a^2, 8/27*(9*a^2*b - 8*b^3)/a^3, 1/3*(3*a*cos(d* 
x + c) - 3*I*a*sin(d*x + c) + 2*b)/a)))/((a^4 - a^2*b^2)*d*cos(d*x + c) + 
(a^3*b - a*b^3)*d)
 
3.7.56.6 Sympy [F]

\[ \int \frac {\sec ^{\frac {3}{2}}(c+d x)}{(a+b \sec (c+d x))^{3/2}} \, dx=\int \frac {\sec ^{\frac {3}{2}}{\left (c + d x \right )}}{\left (a + b \sec {\left (c + d x \right )}\right )^{\frac {3}{2}}}\, dx \]

input
integrate(sec(d*x+c)**(3/2)/(a+b*sec(d*x+c))**(3/2),x)
 
output
Integral(sec(c + d*x)**(3/2)/(a + b*sec(c + d*x))**(3/2), x)
 
3.7.56.7 Maxima [F]

\[ \int \frac {\sec ^{\frac {3}{2}}(c+d x)}{(a+b \sec (c+d x))^{3/2}} \, dx=\int { \frac {\sec \left (d x + c\right )^{\frac {3}{2}}}{{\left (b \sec \left (d x + c\right ) + a\right )}^{\frac {3}{2}}} \,d x } \]

input
integrate(sec(d*x+c)^(3/2)/(a+b*sec(d*x+c))^(3/2),x, algorithm="maxima")
 
output
integrate(sec(d*x + c)^(3/2)/(b*sec(d*x + c) + a)^(3/2), x)
 
3.7.56.8 Giac [F]

\[ \int \frac {\sec ^{\frac {3}{2}}(c+d x)}{(a+b \sec (c+d x))^{3/2}} \, dx=\int { \frac {\sec \left (d x + c\right )^{\frac {3}{2}}}{{\left (b \sec \left (d x + c\right ) + a\right )}^{\frac {3}{2}}} \,d x } \]

input
integrate(sec(d*x+c)^(3/2)/(a+b*sec(d*x+c))^(3/2),x, algorithm="giac")
 
output
integrate(sec(d*x + c)^(3/2)/(b*sec(d*x + c) + a)^(3/2), x)
 
3.7.56.9 Mupad [F(-1)]

Timed out. \[ \int \frac {\sec ^{\frac {3}{2}}(c+d x)}{(a+b \sec (c+d x))^{3/2}} \, dx=\int \frac {{\left (\frac {1}{\cos \left (c+d\,x\right )}\right )}^{3/2}}{{\left (a+\frac {b}{\cos \left (c+d\,x\right )}\right )}^{3/2}} \,d x \]

input
int((1/cos(c + d*x))^(3/2)/(a + b/cos(c + d*x))^(3/2),x)
 
output
int((1/cos(c + d*x))^(3/2)/(a + b/cos(c + d*x))^(3/2), x)